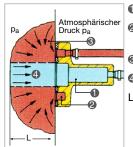
torrent

PERMEABILITÄTS TESTER

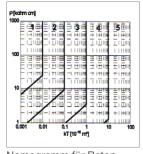
Permeabilität (Durchlässigkeit) von Betonbauteilen rasch, zuverlässig und zerstörungsfrei messen


Die Permeabilität des Betons an der Oberfläche (Überdeckungsbeton) wurde als ein Hauptfaktor erkannt, der die Dauerhaftigkeit von Betonbauteilen bestimmt. Zahlreiche Fachleute betonen die Wichtigkeit dieser Eigenschaft und die Möglichkeit, sie zuverlässig zu messen - sowohl im Labor als auch am Bauwerk oder an Fertigteilen.

Messung der Permeabilität

Die besonderen Merkmale der TORRENT-Methode sind eine Zweikammer-Vakuumzelle und ein Druckregler, die für einen rechtwinklig zur Oberfläche gerichteten Luftstrom zur inneren Kammer sorgen. Dadurch wird die Berechnung des Permeabilitäts-Koeffizienten kT auf der Basis eines einfachen theoretischen Modells möglich.

Das Gerät verfügt über eine benutzerführende Menütechnik und misst nach einem bestimmten Ablauf den Druckanstieg über die Zeit. Die zugehörigen Daten werden vom Anzeigegerät automatisch erfasst und der Permeabilitäts-Koeffizient kT und die Energietiefe L des Vakuums berechnet. Eine Messung dauert 2-12 Minuten, abhängig von der Permeabilität des Betons. Bei trockenem Beton kann die Qualitätsklasse des Überdeckungsbetons anhand des kT-Wertes einer Tabelle entnommen werden. Bei feuchtem Beton wird kT mit dem elektrischen Betonwiderstand ρ (rho) kombiniert und die Qualitätsklasse aus einen Nomogramm ermittelt.


Der Permeabilitäts-Tester TORRENT basiert auf Untersuchungen, welche von der Forschungsstelle der «Holderbank Management und Beratung AG», Schweiz (heute Holcim), durchgeführt wurden. Die Resultate dieser Messungen, die im Labor und auf der Baustelle erzielt wurden, zeigen gute Übereinstimmungen mit Labormethoden wie Sauerstoffpermeabilität, Kapillarwasser-Saugfähigkeit, Chlorid-Permeabilität und anderen.

Luftstrom zu den zwei Kammern der Vakuumzelle

Norm: SN 505 262/1, Anhang E

- 1 Innere Kammer, Druck pi
- Äussere Kammer, Druck P_o P_o=p_i
- Stuftstrom zu äusserer Kammer
- 4 Luftstrom zu innerer Kammer
- L = Eindringtiefe des Vakuums

Nomogramm für Betonqualitätsklasse

Bei feuchtem Beton wird die gemessene Permeabilität kleiner, d.h. die Betonqualität erscheint zu gut. Dieser Effekt lässt sich mit dem elektrischen Widerstand ρ des Betons korrigieren. Die Betonqualitätsklasse wird aus kT und ρ in einem Nomogramm bestimmt.

Umgebungsdruck pa bei Start der Messung

Nummer der Messung

kT, L = Messergebnisse

zugehöriger Betonwiderstand p

= Dauer des Versuchs in s

= Druck in der inneren Kammer der Zelle in

Technische Information Grundausrüstung

Anzeigegerät mit nichtflüchtigem Speicher für 200 Messobjekte

ANZEIGE: 128 x 128 Graphik LCD

SCHNITTSTELLE: RS 232 oder mit Adapter zu USB

SOFTWARE: Integriert für Ausdruck der Messobjekte

und Übertragung an den PC

BATTERIEN: 61,5V, LR 6 Batterien mit 60 Stunden Lebensdauer

TEMPERATURBEREICH: -10° to +60° C

TRAGKOFFER: 325 x 295 x 105 mm, Gewicht total 2,1 kg

Regeleinheit mit Membrandruckregler und **Druckaufnehmer**

VAKUUMANSCHLUSS: Kleinflansch 16 KF

TRAGKOFFER: 520 x 370 x 125 mm, Gewicht total 6,3 kg

Das Gerät wird mit einer handelsüblichen Vakuumpumpe betrieben. Technische Daten nach DIN 28400:

Saugvermögen 1,5 m³/h, Endtotaldruck 10 mbar, Anschluss Saugseite: Kleinflansch 10 KF/16 KF,

hohe Wasserdampfverträglichkeit.

Benutzerführung während Messvorgang Start by START Menu by MENU -Eingabehinweis Anzeige vor Start der Messung

14kΩcm #041-

×10-16 m2

-mban

Regeleinheit

tungsringen

Bestell-Information

EINHEIT

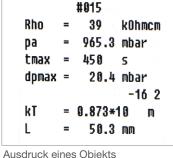
380 02 200 TORRENT PermeabiliätsTester

Beinhaltet Anzeigegerät, Druckerkabel, Transferkabel für PC,

Tragriemen, Bedienugnsanleitung, Regeleinheit,

zwei Tragkoffer

ZUBEHÖR


380 02 500 Widerstandssonde WENNER-PROCEQ mit 8 Schaum-

stoffzapfen, Kabel und Kontrollplatte

390 00 540 Adapter RS232/USB

FRSATZTFII F

ERSAIZIEILE	
380 02 272	Tragkoffer zu Anzeigegerät
380 02 270	Tragkoffer zu Regeleinheit
330 00 456	Transferkabel zu PC
330 00 460	Printerkabel für serielle Schnittstelle
380 02 502	Widerstandssonde WENNER-PROCEQ
	ohne Schaumstoffzapfen, ohne Kabel
380 02 510	Kabel zu Widerstandssonde
380 02 508S	Schaumstoffzapfen für Widerstandssonde, 4 Stück
380 04 250	Kontrollplatte zu Widerstandssonde
380 00 079	Tragriemen für Anzeigegerät
820 38 005D	Bedienungsanleitung

Zweikammer-Vakuumzelle mit Dich-

Ausdruck eines Objekts

Änderungen vorbehalten. Alle Angaben in dieser Dokumentation werden nach Treu und Glaube präsentiert und sind nach bestem Wissen richtig und zuverlässig. Proceq SA übernimmt keine Gewährleistung bezüglich der Vollständigkeit und/oder Richtigkeit der Angaben und schliesst eine entsprechende Haftung aus. Für die Bedienung und Anwendung der von Proceq SA hergestellten und/oder verkauften Produkte wird ausdrücklich auf die entsprechende Bedienungsanleitung verwiesen..

Widerstandssonde WENNER-PROCEQ

Hauptsitz **Proceq SA** Ringstrasse 2

CH-8603 Schwerzenbach

Schweiz

Telefon: +41 (0)43 355 38 00 +41 (0)43 355 38 12

info@proceq.com www.proceq.com